A New Rule-weight Learning Method based on Gradient Descent

نویسندگان

  • S. M. Fakhrahmad
  • M. Zolghadri Jahromi
چکیده

In this paper, we propose a simple and efficient method to construct an accurate fuzzy classification system. In order to optimize the generalization accuracy, we use ruleweight as a simple mechanism to tune the classifier and propose a new learning method to iteratively adjust the weight of fuzzy rules. The rule-weights in the proposed method are derived by solving the minimization problem through gradient descent. Through computer simulations on some data sets from UCI repository, the proposed scheme shows a uniformly good behavior and achieves results which are comparable or better than other fuzzy and non-fuzzy classification systems, proposed in the past.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An eigenvalue study on the sufficient descent property of a‎ ‎modified Polak-Ribière-Polyak conjugate gradient method

‎Based on an eigenvalue analysis‎, ‎a new proof for the sufficient‎ ‎descent property of the modified Polak-Ribière-Polyak conjugate‎ ‎gradient method proposed by Yu et al‎. ‎is presented‎.

متن کامل

Multi-robot Reinforcement Learning Based On Learning Classifier System with Gradient Descent Methods

This paper proposed a robot reinforcement learning method based on learning classifier system. A Learning Classifier System is a accuracy-based machine learning system with gradient descent that combines reinforcement learning and rule discovery system. The genetic algorithm and the covering operator act as innovation discovery components which are responsible for discovering new better reinfor...

متن کامل

Multi-Channel Parallel Adaptation Theory for Rule Discovery

In this paper, we introduce a new machine learning theory based on multi-channel parallel adaptation for rule discovery. This theory is distinguished from the familiar paralleldistributed adaptation theory of neural networks in terms of channel-based convergence to the target rules. We show how to realize this theory in a learning system named CFRule. CFRule is a parallel weight-based model, bu...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

A Parallel Architecture for Data Mining and Knowledge Discovery

In this paper, we introduce a new machine learning theory based on multi-channel parallel adaptation for rule discovery. This theory is distinguished from the familiar parallel-distributed adaptation theory of neural networks in terms of channel-based convergence to the target rules. We show how to realize this theory in a learning system named CFRule. CFRule is a parallel weight-based model, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009